Hybrid MDB Filtering Tool

Natural Language Processing (NLP)

Project Details

Project Information

Project Title: Hybrid MDB Filtering Tool

Category: Natural Language Processing (NLP)

Semester: Fall 2025

Course: CS619

Complexity: Complex

Supervisor Details

Project Description

Hybrid MDB Filtering Tool

 

Project Overview

 

The Moderated Discussion Board (MDB) in VU’s LMS is frequently cluttered with non-academic responses such as “good,” “done,” “present,” or phone numbers for WhatsApp groups. These messages reduce efficiency for faculty who must manually review hundreds of posts. This project proposes developing a browser-based tool integrated with the LMS front-end to automatically detect, filter, and optionally reply to non-academic messages. The solution will improve faculty productivity and maintain the MDB’s academic integrity. Simulate MDB data using mock HTML pages or exported static content.

 

        Collect and label a dataset of sample MDB messages (academic vs. non-academic).

 

        Implement two filtering approaches: a keyword-based system and an AI-powered classifier then

 

compare performance.

Users and Roles

 

Admin:

 

        Manage global keyword list.

 

        Update AI models.

 

        Set default filtering behavior.

 

Faculty Members:

 

        Use the tool for filtering MDB messages.

 

        Manage keyword list locally.

 

        Review and evaluate AI-classified results.

 

Functional Requirements

 

        Dataset Creation Module:

 

        Collect at least 500–1,000 sample messages (synthetic or crowdsourced), labeled as academic or non-academic.

 

        Store datasets in CSV or JSON format.

 

        Keyword-Based Filtering:

 

        Implement regex-based filtering for known patterns (good, done, present, sir, phone numbers).

 

        Provide a toggle to enable/disable keyword filtering.

 

        AI/NLP-Based Classification:

 

        Use TF-IDF + Logistic Regression or Naïve Bayes for classification (Python + scikit-learn).

 

        Optionally experiment with BERT or DistilBERT for advanced filtering.

 

        Display model accuracy (precision, recall, F1-score).

 

        Comparison Dashboard:

 

        Provide metrics comparing keyword filtering and AI classification accuracy.

 

        Allow faculty to review misclassified examples.

 

        Mock LMS Integration:

 

        Build a static MDB interface (HTML/JS/CSS) to simulate the LMS environment.

 

        Inject filtering functionality via a browser extension or userscript.

 

 

 

Page 69 of 167

 

        Export Feature:

 

        Export filtered academic queries into CSV or text.

 

Tools / Languages / Frameworks

 

 

Component Front-End Browser Extension Dataset Handling


 

Technology

JavaScript (ES6+), HTML5, CSS3

 

Tampermonkey or Chrome Extension API Python (pandas, scikit-learn)

 

NLP/ML Classificationscikit-learn, spaCy, or TensorFlow.js

 

 

Visualization

 

Chart.js or D3.js

 

 

 

 

 

 

 

Version Control

 

Git + GitHub/GitLab

 

 

 

 

 

 

 

Expected Outcomes

 

 

 

 

          A dual-filtering system: keyword-based for simplicity and ML-based for adaptability.

 

          Demonstrates AI and front-end skills without requiring LMS backend access.

          A reusable dataset of MDB-like messages for future research or improvements.

 

Supervisor:

 

Name: Saima Jamil

 

Email ID: saima.jamil@vu.edu.pk

 

MS Teams ID: saima.jamil1988@outlook.com

 

 

Languages

  • JavaScript, HTML5, CSS3, Python Language

Tools

  • Tampermonkey, Chrome Extension API, pandas, scikit-learn, spaCy, TensorFlow.js, Chart.js, D3.js, Git, GitHub, GitLab Tool

Project Schedules

No schedules available for this project.

Viva Review Submission

Review Information
Supervisor Behavior

Student Viva Reviews

No reviews available for this project.